Stainless Steel Adjustable Angle Bi-Metal Thermometers available in 3" and 5" dials which permits positioning of the dial to suit viewing needs

STANDARD FEATURES

- All Stainless steel construction
- Accurate to +/- 1\% of scale range
- Gasketed glass face
- External recalibration adjustment
- White dial with black markings
- Case is sealed to exclude dirt, dust \& moisture

ORDER CODE				
	5" (127mm Dial)	3" (76mm Dial)		
Stem Length	Fixed Thread	Union Connection	Fixed Thread	Union Connection
$2.5 "$	AF02	AU02	CF02	CU02
$4 "$	AF04	AU04	CF04	CU04
$6 "$	AF06	AU06	CF06	CU06
$9 "$	AF09	AU09	CF09	CU09
$12 "$	AF12	AU12	CF12	CU12
$15 "$	AF15	AU15	CF15	CU15
$18 " ~$	AF18	AU18	CF18	CU18
$24 " ~$	AF24	AU24	CF24	CU24

Sample Order Code: AF12-10 (10 denotes range of -10/110 Deg C)

* Not recommended for continuous service above 425 deg. C.
Minimum stem length for these ranges 4 ".
${ }^{2}$ Minimum stem length for adjustable angle is 4 ".

SINGLE SCALE		DUAL SCALE		
RANGE CODE	CELSIUS (Fahrenheit also available)	RANGE CODE	FAHRENHEIT (on outside)	CELSIUS (on inside)
$\mathbf{0 3}$	$-50 / 50^{\circ} \mathrm{C}$	$\mathbf{3 5}$	$-40 / 120^{\circ} \mathrm{F}$	$-40 / 50^{\circ} \mathrm{C}$
$\mathbf{1 5}$	$0 / 100^{\circ} \mathrm{C}$	$\mathbf{3 6}$	$-40 / 160^{\circ} \mathrm{F}$	$-40 / 70^{\circ} \mathrm{C}$
$\mathbf{1 0}$	$-10 / 110^{\circ} \mathrm{C}$	$\mathbf{3 7}$	$30 / 130^{\circ} \mathrm{F}$	$0 / 55^{\circ} \mathrm{C}^{2}$
$\mathbf{1 2}$	$0 / 50^{\circ} \mathrm{C}^{2}$	$\mathbf{3 8}$	$0 / 200^{\circ} \mathrm{F}$	$-20 / 90^{\circ} \mathrm{C}$
$\mathbf{1 8}$	$0 / 150^{\circ} \mathrm{C}$	$\mathbf{3 9}$	$0 / 250^{\circ} \mathrm{F}$	$-20 / 120^{\circ} \mathrm{C}$
$\mathbf{2 1}$	$0 / 200^{\circ} \mathrm{C}$	$\mathbf{4 0}$	$50 / 300^{\circ} \mathrm{F}$	$10 / 150^{\circ} \mathrm{C}$
$\mathbf{2 3}$	$0 / 300^{\circ} \mathrm{C}$	$\mathbf{4 1}$	$50 / 400^{\circ} \mathrm{F}$	$10 / 200^{\circ} \mathrm{C}$
$\mathbf{2 8}$	$50 / 450^{\circ} \mathrm{C}{ }^{1 *}$	$\mathbf{4 2}$	$50 / 550^{\circ} \mathrm{F}$	$10 / 290^{\circ} \mathrm{C}$
$\mathbf{3 4}$	$100 / 500^{\circ} \mathrm{C}{ }^{1 *}$	$\mathbf{4 3}$	$100 / 800^{\circ} \mathrm{F}$	$40 / 450^{\circ} \mathrm{C}{ }^{1 *}$
		$\mathbf{4 4}$	$200 / 1000^{\circ} \mathrm{F}$	$100 / 550^{\circ} \mathrm{C}{ }^{1 *}$

